Supplementary Information: ## Calcium-deficient hydroxyapatite as a potential sorbent for strontium Yurina Sekine^{1*}, Ryuhei Motokawa¹, Naofumi Kozai², Toshihiko Ohnuki,^{2,3} Daiju Matsumura¹, Takuya Tsuji¹, Riku Kawasaki,⁴ and Kazunari Akiyoshi^{4,54} ¹Materials Sciences Research Center, Japan Atomic Energy Agency, 2-4 Shirakata-Shirane, Naka-gun, Tokai, Irabaki, 319-1195, Japan. ²Advanced Science Research Center, Japan Atomic Energy Agency, 2-4 Shirakata-Shirane, Naka-gun, Tokai, Ibaraki, 319-1195, Japan. ³Laboratory for Advanced Nuclear Energy, Institute of Innovative Research, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro, Tokyo, 152-8550, Japan. ⁴Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan. ⁵ERATO Bio-nanotransporter Project, Japan Science and Technology Agency, Kyoto University, Kastura, Nishikyo-ku, Kyoto 615-8510, Japan. Figure S1: Dependence of reaction time on A_{eff} for DEF-HAP (closed circles) and ST-HAP (open circles). We conducted sorption tests on solution (70 mL) initially containing HAPs (350 mg) and Sr²⁺ (0.1 mmol/L). An aliquots (1 mL) of the suspension was taken at appropriate time intervals. The supernatant was obtained by centrifugation and filtration, and the concentration of Sr²⁺ was determined using ICP-MS. The result showed that the A_{eff} for DEF-HAP and ST-HAP reaches to an equilibrium after 1 h, so 5 h is enough to evaluate the adsorption behavior. Figure S2: Langmuir isotherm plots for sorption of Sr^{2+} onto DEF-HAP (closed circles) and ST-HAP (open circles). From the obtained values of the slope and the intercept by the fitting, Langmuir isotherm constants, q_{max} and b were estimated.